Simultaneous Sparse Approximation and Common Component Extraction using Fast Distributed Compressive Sensing

نویسندگان

  • Arash Golibagh Mahyari
  • Selin Aviyente
چکیده

Simultaneous sparse approximation is a generalization of the standard sparse approximation, for simultaneously representing a set of signals using a common sparsity model. Generalizing the compressive sensing concept to the simultaneous sparse approximation yields distributed compressive sensing (DCS). DCS finds the sparse representation of multiple correlated signals using the common + innovation signal model. However, DCS is not efficient for joint recovery of a large number of signals since it requires large memory and computational time. In this paper, we propose a new hierarchical algorithm to implement the jointly sparse recovery framework of DCS more efficiently. The proposed algorithm is applied to video background extraction problem, where the background corresponds to the common sparse activity across frames. Keywords—Functional Connectivity Network, Network State, Summarization, Compressive Sensing, Distributed Compressive Sensing,Hierarchal Distributed Compressive Sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Deep Stacking Networks for distributed compressive sensing

This paper addresses the reconstruction of sparse vectors in the Multiple Measurement Vectors (MMV) problem in compressive sensing, where the sparse vectors are correlated. This problem has so far been studied using model based and Bayesian methods. In this paper, we propose a deep learning approach that relies on a Convolutional Deep Stacking Network (CDSN) to capture the dependency among the ...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

WSNs Data Acquisition by Combining Hierarchical Routing Method and Compressive Sensing

We address the problem of data acquisition in large distributed wireless sensor networks (WSNs). We propose a method for data acquisition using the hierarchical routing method and compressive sensing for WSNs. Only a few samples are needed to recover the original signal with high probability since sparse representation technology is exploited to capture the similarities and differences of the o...

متن کامل

A Scheme for Joint Signal Reconstruction in Wireless Multimedia Sensor Networks

In context aware wireless multimedia sensor networks, scenarios are usually such that signals of multiple distributed sensors contain a common sparse component and each individual signal owns an innovation sparse component. So distributed compressive sensing based on joint sparsity of a signal ensemble concept exploits both these intraand intersignal correlation structures and compress signals ...

متن کامل

Block Compressive Sensing Algorithm Based on Interleaving Extraction in Contourlet Domain

Abstract: We propose a block image compressive sensing algorithm based on interleaving extraction in Contourlet domain to improve the performance of image sparse representation and quality of reconstructed images. First, we propose the interleaving extraction scheme and partition an image into several sub-images using interleaving extraction. Second, we represent the sub-images in Contourlet do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.02877  شماره 

صفحات  -

تاریخ انتشار 2015